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ABSTRACT
Genomics is playing an important role in transforming healthcare.
Genetic data, however, is being produced at a rate that far outpaces
Moore’s Law. Many efforts have been made to accelerate genomics
kernels onmodern commodity hardware such as CPUs andGPUs, as
well as custom accelerators (ASICs) for specific genomics kernels.
While ASICs provide higher performance and energy efficiency
than general-purpose hardware, they incur a high hardware design
cost. Moreover, in order to extract the best performance, ASICs tend
to have significantly different architectures for different kernels.
The divergence of ASIC designs makes it difficult to run commonly
used modern sequencing analysis pipelines due to software inte-
gration and programming challenges.

With the observation that many genomics kernels are dominated
by dynamic programming (DP) algorithms, this paper presents
GenDP, a framework of dynamic programming acceleration in-
cluding DPAx, a DP accelerator, and DPMap, a graph partitioning
algorithm that maps DP objective functions to the accelerator. DPAx
supports DP kernels with various dependency patterns, such as
1D and 2D DP tables and long-range dependencies in the graph
structure. DPAx also supports different DP objective functions and
precisions required for genomics applications. GenDP is evaluated
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on genomics kernels in both short-read and long-read analysis
pipelines, achieving 157.8× 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/𝑚𝑚2 over GPU baselines
and 132.0× 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/𝑚𝑚2 over CPU baselines.
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1 INTRODUCTION
Genome sequencing, a key component of precision health, is nec-
essary for early detection of cancer [71], autism [40], infectious
diseases (such as COVID-19 [2]) and genetic diseases [78]. Genomics
is a wide space and there are diverse applications within it, such
as whole genome sequencing [43] and pathogen detection [50].
With the innovation in genome sequencing technologies over the
past decade, sequencing data is being produced cheaper and faster,
increasing at a rate that far outpaces Moore’s Law. The cost to
sequence a human genome has dropped from $100 million at the be-
ginning of this century to less than $1000 nowadays [74]. The total
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amount of sequencing data has been doubling approximately every
seven months and projections indicate that 100 million genomes
will be sequenced by 2030 [7].

This large volume of sequencing data poses significant compu-
tational challenges and requires novel computing solutions which
can keep pace. Recent works explore architecture-aware optimiza-
tions on commodity hardware such as leveraging SIMD hardware
on CPUs [34, 73] and thread-level parallelism on GPUs [9, 10, 26,
28, 57, 61–63]. Custom accelerators, however, achieve much better
performance and are more area and power efficient than CPUs and
GPUs [14, 23–25, 32, 70, 77]. These accelerators gain orders of mag-
nitude speedups over general-purpose hardware, but at a high cost
of hardware design. Specific genomics “kernels” (algorithms) do not
have a market large enough to justify a custom chip. This makes
it difficult to design an accelerator for the particular implementa-
tion of a single kernel, since the state-of-the-art implementation
may change significantly over the next few years. For example,
Smith-Waterman (SW), the basic approximate string matching al-
gorithm, was optimized from the original SW [66] to a banded
SW [17], and further to an adaptive banded SW [44] and a wave-
front version [48]. Therefore, the high cost for designing custom
accelerators and frequent kernel developments motivate a generic
domain-specific accelerator for genome sequencing analysis.

In the commonly used genome sequencing pipelines, dynamic
programming (DP) algorithms are widely used, including read align-
ment and variant calling in reference-guided alignment, layout and
polishing in de-novo assembly, as well as abundance estimation
in metagenomics classification [68]. Matrix multiplications are the
heart of machine learning applications, which motivates the design
of Tensor Processing Units (TPU) [33]. Similarly, DP algorithms are
adopted by many genomics kernels and account for large amounts
of time in mainstream sequencing pipelines, which provides the op-
portunity for a dynamic programming accelerator which supports
both existing and future DP kernels.

Dynamic programming simplifies a complicated problem by
breaking it down into sub-problems which can be solved recursively.
However, accelerating a general-purpose DP algorithm comes with
several challenges. First, DP kernels in common sequencing pipelines
have different dependency patterns, including both 1-Dimension
and 2-Dimension DP tables. Some kernels have long-range depen-
dencies in the graph structure, where cells in the DP table not only
depend on the neighboring cells, but also depend on cells far away.
Second, DP kernels have different objective functions which include
multiple operators. For instance, approximate stringmatching, an al-
gorithm applied in DNA, RNA, and protein sequence alignment, has
three modes: local (Smith-Waterman), global (Needleman-Wunsch)
and semi-global alignment (overlap), as well as three methods for
scoring insertions and deletions: linear, affine, and convex [72]. Each
mode or method above requires a unique objective function. Third,
DP kernels have different precision requirements. It is challenging
to support multiple precision arithmetic while neither losing effi-
ciency for low-precision computation nor compromising accuracy
for high-precision computation.

To address these challenges, we propose GenDP, a framework of
dynamic programming acceleration for genome sequencing analy-
sis, which supports multiple DP kernels. First, we present DPAx, a
DP accelerator capable of solving multiple dependency patterns by

providing flexible interconnections between processing elements
(PEs) in the systolic array. The systolic array helps exploit the
wavefront parallelism in the DP table and provides better spatial
locality for DP dataflow. DPAx decouples the control and compute
instructions in the systolic array. Second, we present DPMap, a
graph partitioning algorithm which maps the data-flow graph of
the objective function to compute units in the DPAx accelerator.
DPAx supports different objective functions and multiple precision
arithmetic by programmable compute units.

We evaluate the GenDP framework on four DP kernels: Banded
Smith-Waterman (BSW) [73], Chain [38, 39], PairwiseHiddenMarkov
Model (PairHMM)[58] and Partial Order Alignment (POA) [72]. We
also demonstrate generality of the proposed framework by extend-
ing to other dynamic programming algorithms such as Dynamic
Time Warping (DTW) which is commonly used for speech detec-
tion [12], as well as the Bellman-Ford (BF) algorithm for shortest
path search in robotic motion planning tasks [51].

In summary, this paper makes the following contributions:

• We propose GenDP, a general-purpose acceleration frame-
work for dynamic programming algorithms.

• We design DPAx, a DP accelerator with programmable com-
pute units, specialized dataflow, and flexible PE interconnec-
tions. DPAx supports multiple dependency patterns, objec-
tive functions, and multi-precision arithmetic.

• We describe DPMap, a graph partitioning algorithm, to map
the data-flow graph of DP objective functions to the compute
units in DPAx.

• We synthesize the design of DPAx in a TSMC 28nm process.
DPAx achieves 157.8× throughput per unit area and 15.1×
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/𝑊𝑎𝑡𝑡 compared to GPU, and 132.0× throughput
per unit area over CPU baselines.

2 BACKGROUND
2.1 Common Genomics Pipelines
Genome sequencing starts with raw data from the sequencer. The
raw signals are interpreted to derive reads (short sequences of
base pairs). This process is named basecalling. Next-generation
sequencing (NGS) technologies produce short reads with∼ 100−150
base pairs (bp) [49], while third-generation technologies produce
much longer reads (> 10,000 bps) [13]. After obtaining reads from
raw data, there are two important analysis pipelines: reference-
guided assembly and ”de novo” assembly (without using a reference
genome).

In reference-guided assembly, the sample genome is reconstructed
by aligning reads to an existing reference genome. Read align-
ment can be abstracted to an approximate string matching problem,
where dynamic programming algorithms [42] are used to estimate
the pairwise similarity between the read and the reference sequence.
After the alignment, small variants (mutations) still exist in aligned
reads. A Hidden Markov Model (HMM) [58] or machine learning
model [46] is then applied to detect such mutations, in a step known
as variant calling.

If there is no reference genome available for alignment, the
genome sequence needs to be constructed with reads from scratch,
which is referred to as ”de novo” assembly. Reads with overlapping
regions can be chained to build an overlap graph and are then
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further extended into larger contiguous regions. Finally, assem-
bly errors are corrected in a graph-based dynamic programming
polishing step [72].

In addition to the two analysis pipelines above, metagenomics
classification, another pipeline, is used for real-time pathogen de-
tection [60] and microbial abundance estimation [41]. Metage-
nomics classification aligns input microbial reads to a reference
pan-genome (consisting of different species) and then estimates the
proportion of different microbes in the sample.

2.2 Dynamic Programming
Dynamic programming [11] simplifies a problem by breaking it
down to subproblems. Following the Bellman equation [37] which
describes the objective function, the subproblems can be solved
recursively from the initial conditions. Longest common subse-
quence (LCS) [31] is a classic DP algorithm that involves looking
for the LCS of two known sequences 𝑋𝑚 = {𝑥0, 𝑥1 ...𝑥𝑚−1} and
𝑌𝑛 = {𝑦0, 𝑦1 ...𝑦𝑛−1}. First, looking for the LCS between 𝑋𝑚 and 𝑌𝑛
can be simplified by looking for LCSs between 𝑋𝑚 and 𝑌𝑛−1, as
well as 𝑋𝑚−1 and 𝑌𝑛 . Each of these two subproblems can be further
broken down into computing the results for LCSs between 𝑋𝑚−1
and 𝑌𝑛−1. If we define 𝑐 [𝑖, 𝑗] to be the length of an LCS between
the sequence 𝑋𝑖 and 𝑌𝑗 , the objective function can be represented
as shown in Equation 1:

𝑐 [𝑖, 𝑗] =


0 𝑖 𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0
𝑐 [𝑖 − 1, 𝑗 − 1] + 1 𝑖 𝑓 𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑥𝑖−1 = 𝑦 𝑗−1
𝑚𝑎𝑥 (𝑐 [𝑖, 𝑗 − 1], 𝑐 [𝑖 − 1, 𝑗]) 𝑖 𝑓 𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑥𝑖−1 ≠ 𝑦 𝑗−1

(1)

Second, a DP table can be constructed based on the sequence 𝑋𝑚
and 𝑌𝑛 to memorize the subproblem results, as shown in Figure 1.
𝑐 [𝑖, 𝑗] is calculated based on its upper, left, and diagonal neighbors
𝑐 [𝑖−1, 𝑗], 𝑐 [𝑖, 𝑗−1], and 𝑐 [𝑖−1, 𝑗−1]. The first row and first column
of the DP table are filled with 0. Based on this initial condition, the
cells in the whole DP table can be filled out. Finally, the largest
value in the table is the length of longest common subsequence and
the corresponding subsequence can be found by the trace back ste,
as shown in the orange block chain in Figure 1.
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Figure 1: DP Table for Longest Common Subsequence

2.3 DP Kernels in Genomics Pipelines
We introduce four important and time-consuming DP kernels from
commonly used genomics pipelines, as shown in Figure 2. Banded
Smith-Waterman (BSW) is applied in read alignment, and variants of
BSW are also used for RNA and protein alignment. Pairwise Hidden
Markov Model (PairHMM) is used in post-alignment variant calling.
Partial Order Alignment (POA) is applied in the polishing step of
assembly. Chain is used in both alignment and assembly of long
read sequencing, as well as metagenomics classification. These four
kernels spend 31%, 70%, 47% and 75% of time in corresponding

sequencing pipeline stages respectively [68]. The details of these
algorithms are explained as follows:

Banded Smith-Waterman (BSW) is the banded version of the
Smith-Waterman [66] algorithm, which estimates the pairwise sim-
ilarity between the query and reference sequences. The similarity
score for a given DNA sequence is typically computed with affine-
gap [52] penalties, identifying short insertions and deletions in
pairwise alignments. The objective function is shown in Figure 2a,
which computes three matrices H, E and F, corresponding to three
edit types: match, insertion and deletion. S is a similarity score
between the base X(i) and Y(j). H(i,j) refers to the similarity
score for the substring X(0,i) and Y(0,j). The banded version of
Smith-Waterman is applied with a maximum of w insertions or dele-
tions, illustrated as the region between black cells in Figure 2a. BSW
can be computed using 8-bit or 16-bit integer arithmetic depending
on the sequence length [24].

Pairwise Hidden Markov Model (PairHMM) aligns reads to
candidate haplotypes identified by the De-Bruijn graph traversal.
The most likely haplotype supported by the reads is identified from
the pairwise alignment, which is performed by a Hidden Markov
Model (HMM). The likelihood score is computed by the formula
shown in Figure 2b, where 𝑓𝑀 , 𝑓 𝐼 and 𝑓 𝐷 representmatch, insertion
and deletion probabilities for aligning read substring X(0,i) to
haplotype substring Y(0,j). The weights 𝛼 are different transition
and emission parameters of the HMM. 𝜌 is the prior probability of
emitting bases X(i) and Y(j). The computation in PairHMM uses
floating-point arithmetic [77].

Partial Order Alignment (POA): In the assembly polishing
step, multiple read sequences are used to construct a partial-order
graph and the consensus sequence is then generated from the graph.
Each unaligned sequence is aligned to the existing graph, as shown
in Figure 2c. The nodes in the partial-order graph represent bases
in the read sequence, and the weighted edges denote the times that
the edges appear in different reads. Each cell not only depends on
the upper and diagonal cells in the previous row, but also depends
on earlier rows if there is an edge connecting that row with the
current row in the graph. The objective function is similar to that
used in BSW.

Chain: Given a set of seed pairs (anchors) shared between a pair
of reads, Chain aims to group a set of collinear seed pairs into a sin-
gle overlap region, as shown in Figure 2d(i). In the 1-Dimension DP
table (Figure 2d(ii)), each anchor is compared with N previous an-
chors (default setting N=25) to determine the best parent. However,
the dependency between neighboring anchors poses difficulties for
parallelism. The reordered Chain algorithm [28] compares each
anchor with N subsequent anchors and updates the scores each
time for them (Figure 2d(iii)).

Table 1 summarizes the characteristics of four DP kernels above,
including the dimension and size of DP tables, dependency patterns
and arithmetic precision. BSW and PairHMM are used for short
read pipelines, while POA and Chain are used in long read pipelines
with larger DP tables. The first three kernels have 2-Dimension DP
tables, whereas Chain has a 1-Dimension DP table. Each of these
four kernels have different precision requirements, as shown in the
last column.
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(d) Chain

(c) Partial Order Alignment(b) Pairwise Hidden Markov Model(a) Banded Smith-Waterman
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Table 1: Characteristics of DP kernels
Kernels Dimension Dependency Precision

2D Table 8-bit/16-bit
BSW ∼ 100 × 60 Last 2 Wavefronts Integer

2D Table
PairHMM ∼ 100 × 60 Last 2 Wavefronts Floating-point

2D Table Graph structure
POA ∼ 1000 × 500 Long-range dependency 32-bit Integer

1D Table 32-bit Integer
Chain ∼ 20000 Last 𝑁 (∼ 25) Anchors Floating-point
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Figure 3: GenDP Framework

3 GENDP FRAMEWORK
Figure 3 demonstrates the structure of the GenDP framework. For
each new DP kernel, we analyze the inter-cell dependency pattern
and the intra-cell objective function, as shown in the top and bottom
blocks respectively in Figure 3. First, the inter-cell dependency

patterns are determined by the recursion rule in the DP kernel.
Based on the dependency pattern, we configure the processing
element (PE) interconnection and generate the control instructions.
Second, the intra-cell data-flow graph for the objective function
is mapped to compute units based on the DPMap algorithm. The
compute instructions are generated based on the mapping results.
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Figure 4: Overview of the DPAx Architecture

3.1 Inter-Cell Dependency Pattern Supports
An overview of the DPAx architecture is described in Figure 4,
including 16 integer PE arrays and one floating point PE array. Each
PE array contains four PEs that are connected as a 1-Dimension
systolic array, in which each PE can receive data from the previous
PE and pass data to the next one. The interconnections of the 16
integer PE arrays are configured based on the dependency pattern
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of the DP kernel. The last PE in the PE array can either be connected
to the first PE in the next PE array or to the data buffer directly.
The 16 integer PE arrays can be concatenated and make up a large
systolic array consisting of 64 PEs. Figures 5b and 5d show PE
arrays of size 4 and 8 respectively.

(a) Data-flow in 2-Dimension DP Table

(b) Small PE Group

PE 4 PE 5 PE 6 PE 7

FIFO 1
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FIFO 0
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Figure 5: Example for DP Tables and PE Interconnections

For kernels with a 2D DP Table, cells within a row are executed in
the same PE. For example, rows with different colors in Figure 5 (a)
are executed in PEs with corresponding colors in Figure 5 (b). Each
element in the target sequence is stored in a PE statically, while
elements in the query sequence are streamed through PEs in the
same array. Each cell depends on results from three neighbors, the
result from the left cell in the same row is stored inside the PE,
while results from upper and diagonal cells in the previous row are
transferred from the previous PE. First-in-First-out (FIFO) buffers
connect the last and the first PEs in the array, from which the first
PE (the first row in next 4-row group) acquires the dependent data
from the last PE (the last row in the current 4-row group). PE array
size determines how many rows can be executed in parallel.

For kernels with a 1D DP Table, cells are mapped to a large PE
array as shown in Figure 5 (d). When multiple small PE arrays are
connected together to form a large PE array, only the FIFO in the
first PE array is utilized. For example, in the first time step, cells
#1-8 in Figure 5 (c) are mapped to PEs as shown in Figure 5 (d).
Cells #1-8 all depend on cell #0. Therefore, the value of cell #0 is
loaded from the FIFO to each PE sequentially. During the next time
step, cells #2-8 move forward to their neighboring PEs. Cell #9 is
sent from the input buffer to the first PE, while cell #1 is moved
out from the last PE. Meanwhile, cell #1 is loaded from the FIFO to
each PE because cells #2-9 all depend on cell #1.

Long-range dependencies in the graph structure are supported
by scratchpad memories (SPM) inside each PE. In a 2D DP table,
usually only the result of left cell is stored in the PE. However, if a
cell depends on other cells in the same row but far away, all of the
candidate dependent cells need to be stored in the PE. In kernels
with long-range dependencies, the result for each cell is not only
stored in registers for reuse by the next cell, but also stored in SPM
for potential reuse by later cells.

3.2 Intra-Cell Objective Function Mapping
In order to support DP objective functions efficiently in the PE, we
design a multi-level ALU array in the compute unit. This multi-
level ALU array is consistent with common compute patterns in

genomics DP kernels, and reduces the register access pressure as
well. The computations in the objective function are represented
by data-flow graphs. DPMap partitions the data-flow graph into
multiple subgraphs which can be further mapped to the ALU arrays
in compute units. The partition rules, constrained by the structure
of the compute unit, will be illustrated in Section 5.

4 DPAX ARCHITECTURE
4.1 Processing Element Array
An overview of the DPAx architecture is shown in Figure 4 and
discussed in the previous section. Figure 6 shows the architecture
of the PE array and PE. The systolic array architecture simplifies
control by allowing data-flow between neighboring PEs. However,
the systolic data path alone cannot satisfy the requirements of var-
ious DP kernels. For example, POA has long-range dependencies
and its dependency pattern is determined by the graph structure.
The movement for such dependency requires branch instructions.
Therefore, DPAx decouples the computation and control archi-
tecture to provide flexible data movements similar to decoupled
access execute architectures [65]. Meanwhile, the parallelism and
the massive reduction tree pattern observed in genomics DP kernels
(Section 4.3) motivate the VLIW architecture.

The PE array consists of the input and output data buffers, control
instruction buffer, decoder, first-in-first-out (FIFO) buffer and four
PEs. PEs are connected as a systolic array and data can be passed
from one PE to the next. The FIFO connects the last and first PEs.
The first PE is connected to the input data buffer to receive the
input sequences. The last PE stores the results to the output data
buffer. The last PE in the PE array is also equipped with a dedicated
port connected to the first PE in the next PE array to build a larger
PE group. In Figure 6, blue solid and orange dotted lines show the
data and control flow respectively.

4.2 Processing Element
Each processing element (PE) is capable of running a control and a
compute thread in parallel. Control and compute instructions are
stored in two instruction buffers and decoded separately. Each PE
contains a register file (RF) and a scratchpad memory (SPM) that
store the short and long range dependencies respectively. Load and
store ports are connected to the previous and next PEs. The first
and last PEs are also connected to the FIFO and Input/Output Data
Buffers.

Each PE is a 2-way VLIW compute unit array that can execute
two independent compute instructions in parallel to exploit the
instruction-level parallelism (ILP). Every PE contains two 32-bit
compute units which execute the VLIW instructions. Each compute
unit (CU) can either execute operations on 32-bit or four concurrent
8-bit groups of operands as a SIMD unit to make use of data-level
parallelism (DLP). The SIMD unit improves the performance of
low-precision kernels, e.g., BSW, where four DP tables are mapped
to four SIMD lanes. The floating point PE array and PE architecture
is similar to the integer one, but only supports 32-bit FP operands.

4.3 Compute Unit Design Choice
We observe that genomics DP kernels have a common reduction
tree pattern as shown in Figure 7 (a) and (b). Thus, we propose a
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reduction tree architecture for the compute unit (CU). The outputs
of the first-level ALUs are used as inputs to the next-level ALUs. The
CU also contains a multiplication module for the weight calculation
in the Chain kernel. Since multiplication increases the length of
the CU critical path, we design it as a separate unit from the ALU
reduction tree.
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Figure 7: Reduction Tree Pattern in (a) BSW and (b) PairHMM
Kernels. (c) (d) (e) Compute Unit Design Choices. GenDP uses
the two-level reduction tree.

Figure 7 (c) (d) (e) shows three possible choices for the ALU
reduction tree. Compared to a 1-level reduction tree, the 2-level
design requires fewer register file accesses and has better balances
of critical path and area; the more levels the ALU reduction tree
has, the fewer times CUs need to access the register file.

Table 2 compares ALU reduction trees of 1, 2 and 3 levels, which
come with 1, 3, and 7 ALUs respectively. “RF Accesses” shows the
number of accesses to each RF in a single cell of the DP table. “CU
Utilization” is calculated as the percentage of cycles during which
each ALU is utilized in the single-cell computation. The 3-level ALU
reduction tree best reduces register file accesses, but lowers the CU
utilization as well. It uses more than twice as many ALUs as the
2-level tree, but hardly reduces the number of RF accesses. Thus,
we pick a 2-level reduction tree for the CU design.

4.4 Execution Model and GenDP ISA
We adopt the following execution model for GenDP. Instructions
are preloaded to the accelerator before starting a DP kernel. Each PE
array runs one thread of execution, controlling the data movement
between data buffers and PEs, as well as the start of the execution
for each PE. Upon receiving the start flag from the PE array, each
PE runs two threads of execution: control and compute. The control

Table 2: ALU Reduction Trees with Different Levels
Kernel Level of ALU RF CU

Reduction Tree Accesses Utilization
1 20 100%

BSW 2 11 60.6%
3 10 28.6%
1 32 96.9%

PairHMM 2 16 64.6%
3 11 40.3%
1 56 85.7%

POA 2 56 28.5%
3 54 12.7%
1 24 95.8%

Chain 2 20 38.3%
3 20 16.4%

thread manages data movement between the SPM, register file,
and the systolic data-flow between neighboring PEs. This thread
also controls the start of the compute thread. The compute thread
executes a compute instruction by decoding instructions, loading
the data from the register file, executing computations in the CU
array, and finally writing results back to the register file.

Table 3: Control Instruction Set Architecture
Type Instruction Assembly

add add rd rs1 rs2
Arithmetic addi addi rd rs1 #imm

li li [dest addr] #imm
Move mv mv [dest addr] [src addr]
Branch beq/bne/bge/blt branch rs1 rs2 offset

set set PC
Other no-op no operation

halt halt

The control ISA is shown in Table 3, which is applied to the
control instructions in both the PE array and PEs. Arithmetic in-
structions manipulate the address registers within the decoders. mv
instructions either load immediate values or move data between
memory components. branch instruction enables the loop itera-
tion. set instructions control the start of execution for a subsidiary
component (e.g. PE arrays control PEs and PEs control CUs). Fig-
ure 8 shows an example for data movement, where two control
instructions (one in each PE) are executed. PE[i-1] moves data from
0x00ff in the register file to its out port, while PE[i] moves data
from its in port to 0x00ff in the scratchpad memory. The delay for
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movements in both PEs are considered into the critical path and
the movement can be done in one cycle. The control instructions
are generated manually in this work.
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out_port in_port
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Figure 8: Example for Data Movement

The 2-way VLIW compute instructions are executed by two
compute units, each of them containing 3 operations (for 3 ALUs of
the 2-level reduction tree in Figure 7 (d)) and 6 operands (4 for the
top left ALU and 2 for the right one). Operations in the compute
instructions are listed in Table 4. The compute instructions are
generated by DPMap algorithm in Section 5.

Table 4: Compute instruction operation
Operation Action
Addition 𝑜𝑢𝑡 = 𝑖𝑛[0] + 𝑖𝑛[1]

Subtraction 𝑜𝑢𝑡 = 𝑖𝑛[0] − 𝑖𝑛[1]
Multiplication 𝑜𝑢𝑡 = 𝑖𝑛[0] × 𝑖𝑛[1]

Carry 𝑜𝑢𝑡 = 𝑐𝑎𝑟𝑟𝑦 (𝑖𝑛[0], 𝑖𝑛[1])
Borrow 𝑜𝑢𝑡 = 𝑖𝑛[0] < 𝑖𝑛[1] ? 1 : 0

Maximum 𝑜𝑢𝑡 =𝑚𝑎𝑥 (𝑖𝑛[0], 𝑖𝑛[1])
Minimum 𝑜𝑢𝑡 =𝑚𝑖𝑛(𝑖𝑛[0], 𝑖𝑛[1])

Left-shift 16-bit 𝑜𝑢𝑡 = 𝑖𝑛[0] ≪ 16
Right-shift 16-bit 𝑜𝑢𝑡 = 𝑖𝑛[0] ≫ 16

Copy 𝑜𝑢𝑡 = 𝑖𝑛[0]
Match Score 𝑜𝑢𝑡 = 𝑠𝑐𝑜𝑟𝑒𝑡𝑎𝑏𝑙𝑒 (𝑖𝑛[0], 𝑖𝑛[1])
Log2 LUT 𝑜𝑢𝑡 = 𝑙𝑜𝑔2(𝑖𝑛[0]) ≫ 1

Log_sum LUT 𝑜𝑢𝑡 = 𝑙𝑜𝑔_𝑠𝑢𝑚(𝑖𝑛[0])
Comparison > 𝑜𝑢𝑡 = 𝑖𝑛[0] > 𝑖𝑛[1] ? 𝑖𝑛[2] : 𝑖𝑛[3]
Comparison == 𝑜𝑢𝑡 = 𝑖𝑛[0] == 𝑖𝑛[1] ? 𝑖𝑛[2] : 𝑖𝑛[3]

No-op Invalid
Halt Stop Computation

5 DPMAP ALGORITHM
The DP objective function is represented as a data-flow graph (DFG).
The DPMap algorithm generates compute instructions by mapping
the DFG to compute units in the PE. In the DFG, a node repre-
sents an operator, while an edge shows the dependency between
operators. The DFG has |𝑉 | nodes 𝑉 = {𝑣0 ...𝑣 |𝑉 |−1} and |𝐸 | edges
𝐸 = {𝑒0 ...𝑒 |𝐸 |−1}. In edge 𝑒𝑖 = (𝑣𝑚, 𝑣𝑛), the operator in node 𝑣𝑛
takes the result of 𝑣𝑚 as an operand. We define node 𝑣𝑚 as the
parent of node 𝑣𝑛 , and 𝑣𝑛 as the child of 𝑣𝑚 . Figure 9(a) shows the
DFG of the BSW kernel.

DPMap breaks the entire graph into subgraphs that contain
either one multiplication or three ALU nodes (Figure 7(d)). The
edges within the subgraphs represent the data movements within
the compute units (CU). The edges between subgraphs represent
accesses to the register file and are removed by DPMap in three
steps. First, Partitioning extracts nodes that will be mapped to
4-input ALUs and multipliers, because a CU supports at most one
such operation. Second, Seeding looks for nodes that could be

mapped to the second level of the ALU reduction tree. Nodes with
more than one parent or more than one child are selected as seeds.
The seed and its parents are mapped to a CU together. After seeding,
the remaining nodes have a single parent or a single child. Third,
Refinement maps every two remaining nodes to the 2-level ALU
tree in a CU. Figure 9 shows an example of the DPMap algorithm.
Four subfigures represent the original graph and the three steps in
DPMap separately. Dashed blocks represent final subgraphs.

Algorithm 1 Partitioning

1: for 𝑣𝑖 ∈ 𝑉 do // Traverse the DFG
2: if 𝑜𝑝𝑐𝑜𝑑𝑒 [𝑣𝑖 ] = 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 then
3: Remove input and output edges of node 𝑣𝑖
4: end if
5: if 𝑜𝑝𝑐𝑜𝑑𝑒 [𝑣𝑖 ] = 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛/𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 then
6: Remove input edges of node 𝑣𝑖
7: if node 𝑣𝑖 has more than one child then
8: for 𝑣 𝑗 ∈ children of node 𝑣𝑖 do
9: if 𝑜𝑝𝑐𝑜𝑑𝑒 [𝑣 𝑗 ] = 𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 then
10: Remove output edge of node 𝑣𝑖
11: else
12: Replicate node 𝑣𝑖
13: end if
14: end for
15: end if
16: end if
17: end for

Partitioning: Algorithm 1 breaks both input and output edges
connected to nodes of 4-input ALUs and Multipliers. All parent and
child edges of the multiplication nodes are removed (lines 2-4).
DPMap also removes the parent edges of 4-input operations (line 6).
For a 4-input node that has two children, we replicate it if the opera-
tions of its children are commutative (except Subtraction) in order
to decrease register file accesses (lines 8-14). After partitioning, all
nodes have at most two parents.

Algorithm 2 Seeding

1: for 𝑣𝑖 ∈ 𝑉 do // Traverse the DFG
2: if node 𝑣𝑖 (seed) has two parent nodes then
3: Remove output edges of node 𝑣𝑖
4: for 𝑣 𝑗 ∈ parents of node 𝑣𝑖 do
5: Remove input edges of node 𝑣 𝑗
6: end for
7: end if
8: if node 𝑣𝑖 (seed) has more than one child then
9: Remove output edges of node 𝑣𝑖
10: end if
11: end for

Seeding: In Algorithm 2, we look for nodes that are suitable for
the second level of the ALU reduction tree and name them seeds.
Nodes that have two parent nodes are located to fit the structure
of the ALU reduction tree (line 2). The output edges of seeds are
removed because the output of this operator will be stored to the
register file (line 3). In addition, since input operands of the seed’s
parents must be fetched from the register file, DPMap also removes
the input edges of the seed’s parent nodes (lines 4-7). Finally, we
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Figure 9: Example for the DPMap algorithm in BSW. In (b) Partitioning, input edges of node comp are removed and a comp node
is replicated to two comp nodes, because their children both have another parent and contain commutative operations. In (c)
Seeding, nodes with two parents or multiple children are located, and are grouped into subgraphs with their parents. In (d)
Refinement, the remaining two comp nodes are grouped into two subgraphs in the end.

remove the output edges of all nodes with more than one child as
its outputs have to be stored in the register file (lines 9-11). At this
point, all nodes have at most one parent or one child.

Refinement: Algorithm 3 traverses the DFG in reverse order. If
the node has a grandparent (line 4), the edge connecting its parent
and grandparent is removed to group every two nodes (line 5). In
the end, all subgraphs are able to be mapped to compute units in
the PE.

Algorithm 3 Refinement

1: for 𝑣𝑖 ∈ {𝑣 |𝑉 |−1 ...𝑣0} do // Traverse in reverse order
2: for 𝑣 𝑗 ∈ parents of node 𝑣𝑖 do
3: if node 𝑣 𝑗 has a parent node then
4: Remove input edge of node 𝑣 𝑗
5: end if
6: end for
7: end for

6 EVALUATION METHODOLOGY
We synthesize the DPAx accelerator using the Synopsys Design
Compiler in a TSMC 28nm process. We use a cycle-accurate simu-
lator to measure the throughput of DPAx accelerator on the 4 DP
kernels introduced in Section 2.3. The BSW, PairHMM and POA
simulations show same results as CPU baselines. The Chain sim-
ulation implements the reordered algorithm and its accuracy is
compared with CPU baseline in Table 6. We use Ramulator [36] to
generate DRAM configurations and use DRAMPower [4] to mea-
sure the power by DRAM access traces. The baseline CPU and
GPU configurations are shown in Table 5. All CPU baselines utilize
SIMD optimizations with AVX512. The CPU die area is estimated
around 600𝑚𝑚2 [6]. We evaluate the GPU baselines on the Google
Cloud Platform. The benchmark configuration for each DP kernel
is detailed as follows.
Banded Smith-Waterman (BSW): BSW is evaluated on two mil-
lion seed extension pairs with four 8-bit SIMD lanes on the DPAx
accelerator. The dataset is obtained from the inputs to the Smith-
Waterman function in BWA-MEM2 [73] using reads from theNA12878
human genome sample ERR194147, an Illumina genomics dataset
consisting of short reads of 101 bp. We choose the 8-bit optimized
SIMD implementation in BWA-MEM2 as the CPU baseline, and

Table 5: Baseline CPU and GPU Configurations
CPU Intel® Xeon® Platinum 8380

Base Frequency 2.3 GHz
Cores(Threads) 40(80)

Process 10nm
TDP 270W

L1 D&I 40×48KB, 40×32KB
Cache L2 40×1MB

Shared L3 60MB
Memory 512GB DRAM
Die Area 600𝑚𝑚2

GPU Nvidia A100
Boost Frequency 1.4 GHz
CUDA Cores 6912

Process 7nm
TDP 300W
Cache L2 40MB
Memory 80GB DRAM, HBM2e
Die Area 826𝑚𝑚2

BSW implementation in GASAL2 [9] as the GPU baseline. We also
compare GenDP with GenAx [24], an ASIC baseline.
Pairwise Hidden Markov Model (PairHMM): We evaluate read-
haplotype pair inputs obtained from the calcLikelihoodScore
function in GATK Haplotype Caller, with BWA-MEM aligned reads
for human chromosome 22 as inputs. The CPU baseline is the opti-
mized SIMD implementation in GATK Haplotype Caller [58]. We
choose the implementation in [16] as the GPU baseline. A pruning-
based implementation [77] is used for both the ASIC baseline and
GenDP. GenDP evaluates the scan phase in a pruning-based im-
plementation which accounts for 97.7% of the workload. The other
2.3% of the workload is a re-computation step which is performed
on the CPU. The measured performance results include time spent
in re-computation on the CPU host.
Partial Order Alignment (POA): POA is evaluated by 6217 con-
sensus tasks obtained when polishing the Flye-assembled Staphylo-
coccus aureus genome with Minimap2-aligned ONT long reads [75].
The CPU baseline is the SIMD accelerated implementation in Racon
[72] and the GPU baseline is in [5]. GenDP supports long-range
dependencies of at most 128 cells away in each row of the DP table.
A few ultra-long dependency (>128) cases (caused by a very long
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deletion in the last few input reads in a read group) account for
2.4% of the workload, and are performed on the host CPU.
Chain: We evaluate the Chain kernel using 10K reads from PacBio
SMRT sequencing data of the C.elegans worm [3, 28] when com-
puting overlaps with itself. We choose the SIMD optimized imple-
mentation in [35] as the CPU baseline and implementation in [28]
as the GPU baseline. The GPU baseline and GenDP both apply the
reordered Chain (Section 2.3) with N=64 in order to best utilize the
parallelism and avoid large overhead of branches, thus computing
3.72× more cells than the CPU baseline. We penalize the measured
GPU and GenDP throughput results by 3.72× to normalize them
with the original CPU implementation. Our profiling results show
that the reordered Chain has comparable accuracy with original
Minimap2 when mapping PBSIM2 [55] simulated long reads to
human genome reference T2T-CHM13 [54], as shown in Table 6.

Table 6: Chain Accuracy Comparison
Minimap2 Reordered Chain (N=64)

Map failure or error 0.2476% 0.2479%
Phred quality score of
low quality map 𝑄 < 10 54.36 54.14

7 RESULTS
7.1 DPAx Area and Power
Table 7 shows the breakdown of area and power for the DPAx
ASIC under a TSMC 28nm process. DPAx consumes 5.4𝑚𝑚2 in
area. Within a PE, 30% of the area is taken by the register file,
22% is taken by the compute unit array, and 16% is taken by the
two decoders. The other 32% of total area is consumed by SRAM,
including instruction buffers and SPM. Table 8 shows the power
breakdown of DPAx and DRAM in 28nm. DRAM power is averaged
across the 4 kernels and DPAx power is the peak power of the ASIC.

Table 7: Breakdown of Area and Power of DPAx ASIC
Components Area Power

(𝑚𝑚2) (W)
Compute Unit Array 0.012 0.007
Decoder 0.008 0.004
Register File 0.015 0.009
Integer PE 0.035 0.020

Logic 1×4 Integer PE Array 0.149 0.081
16×4 Integer PE Array 2.381 1.307
Floating Point (FP) PE 0.047 0.019
1×4 FP PE Array 0.196 0.080
Sub Total 2.577 1.387
Data Buffer (200KB) 0.424 0.273
Instruction Buffer (208KB) 1.222 1.385

Memory Scratchpad (136KB) 0.351 0.217
FIFO (276KB) 0.819 0.306
Sub Total 2.845 2.182

Total 5.391 3.569

Table 8: Breakdown of DPAx Power
Static (W) Dynamic (W) Total (W)

DPAx 1.456 2.113 3.569
DRAM 0.446 0.645 1.091
Total 1.902 2.758 4.660

7.2 GenDP Performance
We use throughput per unit area measured in Million Cell Up-
dates per Second/𝑚𝑚2 (MCUPS/𝑚𝑚2) as a metric for performance.
The area and power of CPU, GenDP and custom accelerators are
scaled [67] to a 7nm process for fair comparison with GPU. GenDP
is expected to run at 2GHz. Figure 10(a) shows 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/𝑚𝑚2

comparisons across four DP benchmarks. Overall, GenDP achieves
132.0× speedup over CPU and 157.8× over GPU. Figure 10(b) shows
the 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/𝑊𝑎𝑡𝑡 comparison between GenDP and GPU. The
large speedup can be attributed to the GenDP ISA, the special-
ized dataflow and on-chip memory hierarchy tailored for dynamic
programming.

Both the BWA-MEM2 CPU baselines and GenDP benefit from
8-bit SIMD optimizations for the BSW kernel. With AVX512, BWA-
MEM2 has 64 SIMD lanes, and GenDP has 4 SIMD lanes. The
PairHMM baseline applies floating point, whereas GenDP applies
the pruned-based implementation using logarithm and fixed point
numbers to approximate the computation and reduce complexity.
The bottleneck of POA performance on GenDP is the memory ac-
cesses. First, it has the graph dependency pattern, which is more
complex than other kernels. The dependency information needs to
be loaded from the input data buffer to each PE. Second, downstream
trace-back functions in POA need the move directions on the DP
table for each cell, which requires 8-byte outputs to be written to
the output data buffer from each cell. Both the input of the depen-
dency information and the output of the move directions consume
extra data movement instructions that limit POA performance on
GenDP. In the Chain kernel, both performances of GPU and GenDP
are penalized by 3.72× for the extra cell computation.

7.3 Comparison with Accelerators
The GenDP framework’s goal is to build a versatile dynamic pro-
gramming accelerator to support a wide range of genomics appli-
cations. Thus it sacrifices performance for programmability and
supporting a broader set of kernels. A key research question is
how much performance is sacrificed for generality. Figure 10(c)
shows the performance of GenDP compared to available custom
genomics ASIC accelerators, GenAx [24] accelerator for BSW, and
pruning-based PairHMM accelerator [77]. We observe a geomean
of 2.8× slowdown. This can be attributed largely to area overheads,
custom datapaths for cell score computation, custom data-flow, and
custom precision. For example, 37.5% of the register and 40% of the
SRAM are only utilized by POA but idle in other kernels, because
POA is significantly more complex than the other three. A custom
data-flow could specify the data bus width between neighboring
PEs and propagate all the data in a single cycle, whereas GenDP
needs control instructions to move data between neighboring PEs
because of various data movement requirements. An accelerator
for one specific kernel can implement one appropriate precision to
save area. For instance, the pruning-based PairHMM ASIC utilizes
20-bit fixed-point data which satisfies the compute requirements,
but GenDP has no such custom precision choice.

In addition to custom genomics ASIC accelerators, we also com-
pare GenDP with other data-flow and spatial architectures. Soft-
Brain [53] is a stream data-flow accelerator, which utilizes a data-
flow graph for repeated and pipelined computation, as well as
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Figure 10: GenDP Power and Performance Comparison with Baselines
stream-based commands for efficient data movements. For the 4
DP kernels discussed in Section 6, GenDP is more area-efficient
and has 2.12× area-normalized speedup over SoftBrain. Table 9
shows the padding overhead and SIMD utilization that limit its
performance. In SoftBrain, we introduce padding to remove data
hazards between pipeline stages in kernels that use 2D DP tables.
SIMD utilization in DP kernels depends on both the number of
SIMD lanes as well as the length of input sequences. In addition,
kernels with a graph structure like POA gain little from the SIMD
parallelism because the number of edges connected to each node
varies in the graph. Intra-cell pipelining is not well suited for POA
because the intra-cell iterative blocks are sequentially computed
and dependent on each other, leading to intra-cell pipeline hazards.
Inter-cell pipelining also provides limited benefits because there is
a variable number of block iterations within each cell (determined
by the number of edges connected to the current node).

Table 9: Benchmark implementation on SoftBrain
Dimen- Pipe. Padding SIMD GenDP
sion Stages Overhead Lanes(Util.) Speedup

BSW 2D 3 9.9% 8(42.2%) 2.24x
PairHMM 2D 4 15.7% 2(95.9%) 1.13x

POA Graph 1 0 1(100%) 10.74x
Chain 1D 10 0 2(73%) 0.75x

Triggered instruction architecture (TIA) [56] eliminates the pro-
gram counter and branch instructions by predication, and exploits
the locality in the spatial algorithms by using a PE array with
mesh topology. However, the area and timing complexity of the
trigger scheduler imposes a restriction on the number of triggered
instructions (TI). For example, an implementation of edit distance
scoring-based DP on top of TIA requires two PEs for 11 TIs [69].
A similar mapping strategy used on the DP kernels in Section 6
requires multiple PEs to compute the objective function in a single
DP cell, limiting the benefits obtained from a spatial architecture
like TIA. The number of TIs and PEs required by objective functions
in each DP kernel is listed in Table 10.

Table 10: Triggered Instruction (TI) Required on TIA
Kernel BSW PairHMM POA Chain

Number of TIs required 30 45 90 47
Number of PEs required 5 8 16 8

In summary, GenDP balances well the specialization and general-
ity trade-off for dynamic programming acceleration. Custom ASIC
accelerators achieve better performance but are less programmable.
SoftBrain, with reconfigurable networks, cannot efficiently sup-
port the DP kernels described in this work because of parallelism
overhead and pipeline hazards. TIA reduces control instructions

and exploits the spatial locality but is not well suited for compute-
intensive DP kernels with complex scoring schemes.

7.4 ISA Analysis
GenDP has a more efficient ISA for DP algorithms than general-
purpose processors. We compare the number of compute instruc-
tions required per cell update in GenDP ISA to riscv64 and x86-64
ISA. The riscv64 and x86-64 instruction counts are obtained us-
ing riscv64-unknown-elf-g++ and g++ compilers respectively.
Among four kernels, the instruction counts on GenDP are reduced
by 8.1× and 4.0× on average when compared with riscv64 and x86-
64, shown in Figure 10(d). The efficiency of GenDP instructions is
affected by compute unit utilization, as shown in Table 2.

Several advantages of GenDP ISA are shown as follows: First,
GenDP applies the VLIW architecture, where one instruction con-
tains opcodes for 6 ALUs in the compute unit (CU) array. The ALU
reduction tree in the CU fits the compute characteristics of DP
kernels well. GenDP has an average 48% VLIW utilization among
4 kernels, shown in Table 11. The multiplication and conditional
operations in Chain and POA could only be mapped to 4-input
ALUs in DPAx, which limits the VLIW utilization. Meanwhile, Dur-
ing the execution in POA, 14.3% of the CUs are idle because of
the complex dependency pattern of POA. Second, GenDP’s ISA in-
cludes several custom operations such as Comparison, Max/Min
and Lookup Table (LUT). In Chain, GenDP uses a special instruc-
tion for the LUT. In comparison, riscv64 and x86-64 need 14 and 7
instructions respectively for this LUT implementation. Third, the
systolic array architecture provides spatial locality and saves many
register-to-register operations. Meanwhile, DPAx has a memory
hierarchy design with FIFO and scratchpad memory, which cache
intermediate values for inter-cell communication and reduce the
memory access to DRAM.

Table 11: VLIW Utilization
Kernel BSW PairHMM Chain POA

Utilization 60.6% 64.6% 38.3% 28.5%

7.5 Scalability
With 8-channel DDR4-2400 DRAM (153.2 GB/s peak bandwidth),
GenDP could scale up to 64 DPAx tiles and achieve 6.17× raw
performance speedup over the GPU baseline, shown in Table 12.
The area of GenDP is scaled [67] to 7nm to make a fair comparison
with the GPU baseline.

7.6 Generality and Limitation
In addition to these four DP kernels within the commonly used
sequencing pipelines, the GenDP framework also supports other
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Table 12: GenDP and GPU Raw Performance Comparison
Area(𝑚𝑚2) Raw Perf.(GCUPS) Speedup

NVIDIA A100 GPU 826.0 48.3 1
GenDP (64 tiles) 44.3 297.5 6.17x

DP algorithms in either genomics or broader fields. This section
discusses the generality and limitation of GenDP.

7.6.1 Dependency range. DP algorithms could be categorized into
near-range (e.g., neighboring dependency pattern), limited long-
range (e.g., dependency distance within 128) and ultra long-range
(e.g., dependency distance longer than 128). GenDP could efficiently
support near-range and long-range dependencies by fine-grained
spatial locality design, such as the systolic array and scratchpad
memory in the PE. GenDP also supports ultra long-range depen-
dencies but needs to access these data through DRAM because the
on-chip buffer is not large enough. However, the ultra long-range
dependencies are usually rare, for example, POA only has 2.4%
workload with dependency distances longer than 128, which are
performed on the host CPU in simulation.

7.6.2 Active region. GenDP requires to specify the active regions
in the DP table before the computation starts. For example, GenDP
supports the static band choice in the DP table but does not support
adaptive or dynamic band choice. In these cases, GenDP could
choose a larger tiled static region that covers the adaptive bands
but will sacrifice some performance.

7.6.3 Objective function. GenDP ISA supports most computations
in the commonly used genomics pipeline, including local, global and
semi-global approximate string matching as well as linear, affine,
and convex scoring modes mentioned in Section 1. It also supports
DP algorithms in other fields such as speech detection and robot
motion planning.

7.6.4 Multi-precision arithmetic. DP kernels utilize computations
of different precisions. For example, BSW can be computed using
8-bit or 16-bit precision depending on the sequence length. Compu-
tations in POA and Chain are in 32-bit integer format and PairHMM
requires both integer and floating-point computation. DPAx has
both integer and floating-point PEs. The integer PEs support 32-bit
and 8-bit integer arithmetic, and also support 64-bit and 16-bit ba-
sic operations such as addition, subtraction, and multiplication by
using two parallel compute units.
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Figure 11: GenDP Instruction and Performance on DTW and
BF benchmarks

7.6.5 Broader field. Dynamic Time Warping (DTW) measures
the similarity between two temporal sequences, which could be
utilized for nanopore signal basecalling [23] and speech detec-
tion [12]. DTW has near-range dependency pattern similar to

Smith-Waterman. Bellman-Ford (BF), a shortest path search algo-
rithm, is commonly used for robotic motion planning applications.
BF has a graph-based dependency pattern where the long-range
dependencies within a certain distance could be efficiently sup-
ported by GenDP and the ultra-long range dependencies need ac-
cesses through DRAM. GenDP supports both objective functions
of DTW and BF. Their performance and instruction comparisons
with GPU [1, 64] are shown in Figure 11.

8 RELATEDWORK
Dynamic Programming Accelerators in Genomics: Many cus-
tom genomics accelerators have been proposed to boost the per-
formance of DP kernels in genomics pipelines, which significantly
improve the performance over commodity hardware. However,
these accelerators only support a single genomics kernel and must
be customized and combined to support different stages of genomics
pipelines. This increases both design cost and complexity. For ex-
ample, [18–20, 24, 25, 45, 47, 70] are customized for read alignment
and SquiggleFilter [23] is optimized for basecalling. GenASM [14]
converts the DP objective function into bit-wise operations such
as AND, OR, and SHIFT. Although GenASM partially supports the
affine gap penalty model [52], bit-wise operations inherently fail to
implement all the complex objective functions needed in different
stages of genomics pipelines. SeGraM [15] extends GenASM to
sequence-to-graph mapping and supports seeding, but supports
limited DP objective functions as well. Race Logic [47] utilizes the
race conditions in the circuit to accelerate the edit distance func-
tion in the bioinformatics field such as DNA sequence alignment
and protein string comparison. However, other DP kernels such
as PairHMM and Chain are not edit distance problems and have
more complicated objective functions and higher numeric precision
requirements. It is challenging to map such kernels to the Race
Logic accelerator. GenDP aims to fill this gap and proposes a gen-
eralized acceleration framework that can be applied to accelerate
the various flavors of dynamic programming common in genomics
pipelines.

Besides genomics applications, dynamic programming algorithms
are also accelerated in other domains, such as shortest path in ro-
bot motion planning [51]. There has also been industry interest
in DP acceleration. For example, NVIDIA recently announced the
dynamic programming instructions (DPX) in the Hopper architec-
ture [8], but the corresponding products and CUDA library have
not been released yet.
Domain Specific Accelerators in Genomics: Several domain
specific accelerators have been explored for databases [76], machine
learning [21, 33] and graph processing [22, 30]. However, there has
been little work on domain specific accelerators for genomics. Based
on the insight that data manipulation operations are also common
in genomics pipelines, Genesis [29] proposes a domain-specific ac-
celeration framework customized for data manipulation operations
in genome sequencing analysis. Genesis uses an extended SQL as
a domain specific language and provides the relevant hardware
libraries. The framework is evaluated on AWS cloud FPGA and
achieves up to 19.3× speedup over the 16-thread CPU baseline.
However, the hardware modules only cover database operations
for data manipulation and users need to add custom modules for
different genomics pipelines. In contrast, different from Genesis’s
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target, GenDP focuses on dynamic programming acceleration in
genomics pipelines.
General Accelerators: There are also several works that have
identified common compute and memory access patterns across
both regular and irregular workloads and proposed reconfigurable,
spacial and dataflow architectures for these patterns [27, 53, 56, 59].
But these accelerators are mostly optimized for data-parallel or data-
intensive applications and not suitable for dynamic programming
kernels. Plasticine [59] is a spatially reconfigurable architecture for
parallel patterns, which supports broad applications, but has lower
functional unit utilization on data-dependent applications such
as PageRank (3.9%) and BFS (3.1%) than data-parallel applications
(∼50%). SoftBrain [53] and TIA [56] are discussed in Section 7.3.

9 CONCLUSION
In order to support general-purpose acceleration for genomics ker-
nels in the commonly used sequencing pipelines, this work pre-
sented GenDP, a programmable dynamic programming acceler-
ation framework, including DPAx, a systolic array-based DP ac-
celerator, and DPMap, a graph partitioning algorithm to map DP
kernels to the accelerator. DPAx supports multiple dependency
patterns through flexible PE interconnections and different DP ob-
jective functions using programmable compute units. GenDP is
evaluated on four important genomics kernels, achieving 157.8×
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/𝑚𝑚2 and 5.1× 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/𝑊𝑎𝑡𝑡 compared to GPU,
and 132.0× 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/𝑚𝑚2 over CPU baselines, and is also ex-
tended to DP algorithms in broader fields.
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A ARTIFACT APPENDIX
A.1 Abstract
This document briefly describes how to reproduce the main perfor-
mance results of this paper in Figure 10 (a) and (c). The instructions
in this document include 1) how to download the datasets, 2) how
to run CPU/GPU baselines, 3) how to run GenDP simulations. The
source code and instructions are accessible from GitHub. The ex-
pected results are shown in Table 13, 14 and 15.

A.2 Artifact check-list (meta-information)
• Algorithm: Banded Smith-Waterman (BSW), Chain, Pairwise Hid-
den Markov Model (PairHMM), Partial Order Alignment (POA).

• Program: C++ and Python
• Compilation: g++ 8.3.1 and Intel® oneAPI DPC++/C++ Compiler
2021.8.0

• Data sets: Illumina NA12878 human genome sample ERR194147
(BSW), PacBio SMRT sequencing data of the C.elegansworm (Chain),
human chromosome 22 (PairHMM), Flye-assembled
Staphylococcus aureus genome (POA).

• Hardware: Intel CPU with >= 16G memory and >= 40G storage,
and NVIDIA GPU.

• Execution: Bash script for compilation and execution

• Metrics: Throughput: cell updates per second
• Output: CPU/GPU runtime and GenDP throughput
• Experiments: CPU/GPU baselines and GenDP simulation for 4
benchmarks (BSW, Chain, PairHMM and POA)

• How much disk space required (approximately)?: 40G
• How much time is needed to prepare workflow (approxi-
mately)?: ∼ 1 hour

• How much time is needed to complete experiments (approxi-
mately)?: ∼ 24 hours

• Publicly available?: Yes.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7792246

A.3 Description
A.3.1 How to access. The artifact could be accessed from GitHub
and Zenodo.

A.3.2 Hardware dependencies.

(1) Intel CPU and NVIDIA GPU
(2) 16G memory and 40G storage

A.3.3 Software dependencies.

(1) Linux OS
(2) gcc >= 8.3.1
(3) cmake >= 3.16.0
(4) OpenMP >= 201511
(5) Intel® DPC++/C++ Compiler >= 2021.8.0
(6) ZLIB >= 1.2.8
(7) CUDA >= 10.0
(8) Python >= 3.7.9
(9) numactl >= 2.0.0

A.3.4 Data sets. The list below shows the details of datasets and
the table shows the approximate simulation time and corresponding
input size. BSW simulation is fast and the default setting is entire
dataset.

• BSW: Illumina NA12878 human genome sample ERR194147
(1932254 short reads with length <= 128)

• Chain: PacBio SMRT sequencing data of the C.elegans worm
(10000 long reads)

• PairHMM: Human chromosome 22 (1420266 short reads)
• POA: Flye-assembled Staphylococcus aureus genome (6216
consensuses, each including 10 ∼ 100 long reads)

A.4 Installation
Download the code base from GitHub and install Intel DPC++/C++
Compiler (ICX).

A.5 Experiment workflow
Please follow the instructions on GitHub.

Step 1: Check System Requirements
Step 2: Download Repository and Data sets (∼ 10 min)
Step 3: Run CPU Baselines (∼ 10 min)
Step 4: Run GPU Baselines (∼ 10 min)
Step 5: Run GenDP Simulation (∼ 24 hours)
Table 16 shows the relationship between data sets size and sim-

ulation time. We recommend to run scripts for ∼ 6 hours or ∼ 24
hours.

https://github.com/Yufeng98/GenDP
https://doi.org/10.5281/zenodo.7792246
https://github.com/Yufeng98/GenDP.git
https://doi.org/10.5281/zenodo.7792246
https://github.com/Yufeng98/GenDP.git
https://github.com/Yufeng98/GenDP.git
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Table 13: CPU Baselines
CPU Operating System SIMD Flag Threads BSW Chain PairHMM POA

Intel® Xeon® Platinum 8380 CentOS Linux 7 (CORE) AVX512 80 0.0504 0.306 0.587 16.6
Intel® Xeon® Gold 6326 Ubuntu 20.04.5 LTS AVX512 32 0.0984 0.473 0.792 34.3
Intel® Xeon® E5-2697 v3 CentOS Linux 7 (CORE) AVX2 28 0.196 2.35 2.13 41.7

12th Gen Intel® Core™ i5-12600 Ubuntu 22.04.2 LTS AVX2 12 0.140 2.21 1.71 36.6
Intel® Core™ i7-7700 Ubuntu 20.04.5 LTS AVX2 8 0.29 4.79 4.51 98.5

Table 14: GPU Baselines
GPU Arch Code CUDA Version BSW Chain PairHMM POA

NVIDIA A100 sm_80 11.2 0.012 0.155 0.597 2.53
NVIDIA RTX A6000 sm_86 12.0 0.012 0.339 0.572 3.70
NVIDIA TITAN Xp sm_61 10.2 0.020 0.747 0.915 11.2

Table 15: GenDP Speedup over CPU and GPU Baselines
BSW Chain PairHMM POA

Total Cell Updates 2,431,855,834 20,736,142,007 258,363,282,803 6,448,581,509
CPU Runtime (seconds) 0.0504 0.306 0.587 16.6

CPU GCUPS 44.91 19.61 32.88 14.51
CPU Normalized𝑀𝐶𝑈𝑃𝑆/𝑚𝑚2 130.29 56.89 95.41 42.11

GPU Runtime (seconds) 0.012 0.155 0.597 2.53
GPU GCUPS 192.92 10.40 32.35 95.13

GPU𝑀𝐶𝑈𝑃𝑆/𝑚𝑚2 239.16 12.89 40.11 117.94
ASIC Normalized𝑀𝐶𝑈𝑃𝑆/𝑚𝑚2 118,950 - 51,867 -
GenDP Normalized𝑀𝐶𝑈𝑃𝑆/𝑚𝑚2 47,574 3,626 17,681 2,965

GenDP Speedup over CPU 365.1x 63.7x 185.3x 70.4x
GenDP Speedup over GPU 198.9x 281.4x 440.8x 25.1x

Table 16: Data Sets Size and Approximate Simulation Time
Simulation time BSW Chain PairHMM POA

∼ 6 hours 1,932,254 100 100,000 100
∼ 24 hours 1,932,254 1,000 500,000 200
∼ 250 hours 1,932,254 10,000 1,420,266 6,216

A.6 Evaluation and expected results
• The CPU and GPU baselines are machine-dependent. Some
reference results on different platforms are listed in Table 13
and Table 14.

• GenDP normalized throughputs are comparable to reported
results. See Row 9 in Table 15. The CPU and GPU baselines
shown in the table above are obtained from Xeon Platinum
8380 and NVIDIA A100 separately. The simulation results
with entire datasets could reproduce the results but it may
take ∼ 250 hours and require ∼ 2 TB storage space. We
recommend to run scripts for ∼ 6 hours or ∼ 24 hours. The
simulation results with limited input size could be different
but comparable to the reported table above.
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